Partial orders based on core-nilpotent decomposition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Orders on Partial Isometries

This paper studies three natural pre-orders of increasing generality on the set of all completely non-unitary partial isometries with equal defect indices. We show that the problem of determining when one partial isometry is less than another with respect to these pre-orders is equivalent to the existence of a bounded (or isometric) multiplier between two natural reproducing kernel Hilbert spac...

متن کامل

The space of bi-invariant orders on a nilpotent group

We prove a few basic facts about the space of bi-invariant (or left-invariant) total order relations on a torsion-free, nonabelian, nilpotent group G. For instance, we show that the space of bi-invariant orders has no isolated points (so it is a Cantor set if G is countable), and give examples to show that the outer automorphism group of G does not always act faithfully on this space. Also, it ...

متن کامل

Partial orders in rings based on generalized inverses – unified theory

Article history: Received 20 August 2014 Accepted 3 January 2015 Available online xxxx Submitted by Y. Wei MSC: 06A06 15A09 16U99

متن کامل

Revising Partial Pre-Orders with Partial Pre-Orders: A Unit-Based Revision Framework

Belief revision studies strategies about how agents revise their belief states when receiving new evidence. Both in classical belief revision and in epistemic revision, a new input is either in the form of a (weighted) propositional formula or a total pre-order (where the total pre-order is considered as a whole). However, in some real-world applications, a new input can be a partial pre-order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2016

ISSN: 0024-3795

DOI: 10.1016/j.laa.2015.09.046